Correction de FONCTIONS - Fiche 4

Navigation vers les corrections : 2 3 4 5

(1) 1.

Ce n'est pas un calcul de primitive puisqu'on vous donne la primitive candidate et qu'il suffit de vérifier qu'elle l'est. En plus, nous ne pourrions pas trouver une primitive grâce à nos fonctions et formes usuelles...

Il suffit de dériver g et trouver $\ln s$

g est de la forme
$$uv - u$$
 avec
$$\begin{cases} u(x) = x \text{ et } u'(x) = 1\\ v(x) = \ln x \text{ et } v'(x) = \frac{1}{x} \end{cases}$$

donc g est dérivable sur] 0; $+\infty$ [et g' = u'v + uv' - u

donc, pour tout $x \in \]\ 0\ ; +\infty\ [\ :$

$$g'(x) = 1 \times \ln x + x \times \frac{1}{x} - 1$$

= $\ln x + 1 - 1$

 $= \ln x$

Donc g est bien une primitive de $\ln \sup]0; +\infty [$.

Dérivons F pour trouver f.

F est de la forme $-\frac{3}{2}\ln(u)$ avec $u(x) = 1 + e^{-2x}$ et $u'(x) = -2e^{-2x}$

donc F est dérivable sur \mathbb{R} et $F' = -\frac{3}{2} \frac{u'}{u}$.

donc, pour tout
$$x \in \mathbb{R}$$
:
 $F'(x) = -\frac{3}{2} \frac{-2e^{-2x}}{1 + e^{-2x}}$
 $= \frac{3e^{-2x}}{1 + e^{-2x}}$

Il n'est pas évident d'y voir f(x) ...

N'oubliez pas que pour démontrer que deux choses sont égales, on peut <u>partir de l'une pour arriver à l'autre</u> mais on peut aussi <u>partir des deux pour arriver à</u> la même chose.

Or,
$$f(x) = 3 - \frac{3}{1 + e^{-2x}}$$

$$= \frac{3(1 + e^{-2x})}{1 + e^{-2x}} - \frac{3}{1 + e^{-2x}}$$

$$= \frac{3 + 3e^{-2x} - 3}{1 + e^{-2x}}$$

$$= \frac{3e^{-2x}}{1 + e^{-2x}}$$

Donc F est bien une primitive de f sur \mathbb{R} .

Ovec de l'astuce, on pouvait néanmoins continuer le calcul et arriver à f(x):

On a une simple somme d'expressions usuelles avec des constantes multiplicatives qui sont conservées. 2

Une primitive de f sur \mathbb{R} est $F: x \mapsto -3\frac{x^3}{3} + 5\frac{x^2}{2} - 2x = -x^3 + \frac{5x^2}{2} - 2x$.

 \rightarrow Pensez à arranger votre expression si c'est possible.

2. De même ici :

Une primitive de g sur] 0; $+\infty$ [est $x \mapsto e^x + \ln x$

donc les primitives de g sur]0; $+\infty$ [sont les fonctions $G_k: x \mapsto e^x + \ln x + k$, avec $k \in \mathbb{R}$.

- 3. Une primitive de h sur $]0; +\infty[$ est $H: x \mapsto 2 \ln x$. a.
 - Nous n'avons plus une expression usuelle.

Cherchons une forme usuelle.

h est de la forme $\frac{u'}{u}$ avec u(x) = x - 1 strictement positif sur] 1; $+\infty$ [et u'(x) = 1, \longrightarrow Signaler la positivité pour entrer dans \ln . donc, une primitive de h sur] 1; $+\infty$ [est $H = \ln(u): x \mapsto \ln(x-1)$.

Non. ce n'est pas deux fois la même question!

h est de la forme $\frac{u'}{u}$ avec u(x) = x - 1 strictement négatif sur $]-\infty$; 1 [et u'(x) = 1, \longrightarrow Signaler la négativité...

donc, une primitive de h sur] $-\infty$; 1 [est $H = \ln (-u) : x \mapsto \ln (1-x)$.

 \rightarrow ... pour que -u soit positif.

On n'est pas loin de la forme usuelle $\frac{u'}{u}$ mais il manque u'(x)=2 en numérateur.

Forçons sa présence en compensant :

$$\frac{1}{2x+1} = \frac{1}{2} \frac{2}{2x+1}$$

h est de la forme $\frac{1}{2}\frac{u'}{u}$ avec u(x) = 2x + 1 strictement positif sur $]-\frac{1}{2}$; $+\infty$ [et u'(x) = 2,

donc, une primitive de h sur $]-\frac{1}{2}$; $+\infty$ [est $H=\frac{1}{2}\ln(u): x\mapsto \frac{1}{2}\ln(2x+1)$.

- Me pas sublier notre constante multiplicative

Oh, comme c'est gentil ne nous mettre le 2 ... Oui mais il manque quand même un petit quelque chose...

$$\frac{2}{1-2x} = -\frac{-2}{1-2x}$$

h est de la forme $-\frac{u'}{u}$ avec u(x) = 1 - 2x strictement positif sur $]-\infty; \frac{1}{2}[$ et u'(x) = -2,

donc, une primitive de h sur $]-\infty$; $\frac{1}{2}$ [est $H = -\ln(u): x \mapsto -\ln(1-2x)$.

Oh ben là, on nous a mis un 3 qui ne nous convient pas.

On va le pousser sur le côté mais ne pas l'oublier!

$$\frac{3}{2x+1} = 3 \times \frac{1}{2} \frac{2}{2x+1}$$

h est de la forme $\frac{3}{2}\frac{u'}{u}$ avec u(x) = 2x + 1 strictement positif sur $]-\frac{1}{2}$; $+\infty$ [et u'(x) = 2,

donc, une primitive de h sur $]-\frac{1}{2}$; $+\infty$ [est $H=\frac{3}{2}\ln{(u)}: x\mapsto \frac{3}{2}\ln{(2x+1)}$.

Même problème que dans le e, mais on a changé de forme! On n'est pas loin de la forme usuelle $\frac{u'}{u^2}$.

$$\frac{3}{(2x+1)^2} = 3 \times \frac{1}{2} \frac{2}{(2x+1)^2}$$

h est de la forme $\frac{3}{2} \frac{u'}{u^2}$ avec u(x) = 2x + 1 et u'(x) = 2,

→ Plus besoin de la positivité.

donc, une primitive de h sur $]-\frac{1}{2}; +\infty[$ est $H=\frac{3}{2}\frac{-1}{u}: x \mapsto \frac{3}{2}\frac{-1}{2x+1} = \frac{-3}{2(2x+1)}$

On est passé à la forme usuelle $\frac{u'}{u^3}$.

$$\frac{3}{(2x+1)^3} = 3 \times \frac{1}{2} \frac{2}{(2x+1)^3}$$

h est de la forme $\frac{3}{2} \frac{u'}{u^3}$ avec u(x) = 2x + 1 et u'(x) = 2,

donc, une primitive de h sur $]-\frac{1}{2}$; $+\infty$ [est $H=\frac{3}{2}\frac{1}{2}\frac{1}{u^2}$: $x\mapsto \frac{3}{2}\frac{1}{-2}\frac{1}{(2x+1)^2}=\frac{-3}{4(2x+1)^2}$

Si vous n'êtes pas à l'aise avec la formule $\frac{1}{-n+1}\frac{1}{u^{n-1}}$, vous pouvez écrire $\frac{u'}{u^3}$ sous la forme $u'u^{-3}$ et utiliser la formule $\frac{u^{n+1}}{n+1}$. Une primitive de $u'u^{-3}$ est en effet $\frac{u^{-3+1}}{-3+1}$ qui devient bien $\frac{1}{-2}\frac{1}{u^2}$.

Ottention au carré! Ce n'est pas la forme $\frac{u'}{u^2}$

C'est de nouveau $\frac{u'}{u}$ mais on a changé de u

$$\frac{x}{x^2+1} = \frac{1}{2} \frac{2x}{x^2+1}$$

h est de la forme $\frac{1}{2} \frac{u'}{u}$ avec $u(x) = x^2 + 1$ strictement positif sur \mathbb{R} et u'(x) = 2x,

donc, une primitive de h sur \mathbb{R} est $H = \ln(u) : x \mapsto \ln(x^2 + 1)$

C'est encore du $\frac{u'}{}$

Mais alors, quel est le problème?

 $x^2 + x + 1$ a pour discriminant $\Delta = 1^2 - 4 \times 1 \times 1 = -3 < 0$

donc il est du signe constant de son coefficient dominant 1 positif.

h est de la forme $\frac{u'}{u}$ avec $u(x) = x^2 + x + 1$ strictement positif sur \mathbb{R} et u'(x) = 2x + 1,

donc, une primitive de h sur \mathbb{R} est $H = \ln(u) : x \mapsto \ln(x^2 + x + 1)$.

4. Une première difficulté sera de gérer la constante additive.

Ottention! Elle ne disparaît pas...

$$\frac{1}{2-3x} = -\frac{1}{3} \frac{-3}{2-3x}$$

 φ est de la forme $1 - \frac{1}{3} \frac{u'}{u}$ avec u(x) = 2 - 3x positif sur $] - \infty$; $\frac{2}{3}$ [et u'(x) = -3,

donc, une primitive de φ sur] $-\infty$; $\frac{2}{3}$ [est $x \mapsto x - \frac{1}{3} \ln \left(2 - 3x \right)$

ightarrow On peut alléger en n'écrivant pas la forme générale.

donc, F est de la forme des primitives de φ sur $]-\infty$; $\frac{2}{3}[$ qui sont les $x\mapsto x-\frac{1}{3}\ln(2-3x)+k$ avec $k\in\mathbb{R}$.

Il faut maintenant trouver la constante k pour vérifier la condition :

Alors:

$$F(-2) = 0$$

 $\Leftrightarrow -2 - \frac{1}{3} \ln (2 - 3 \times (-2)) + k = 0$

$$\Leftrightarrow k = 2 + \frac{1}{3} \ln 8$$

$$\Leftrightarrow k = 2 + \ln 2$$

On en déduit que F est la fonction définie par $F(x) = x - \frac{1}{3} \ln (2 - 3x) + 2 + \ln 2$.

Car: $2 + \frac{1}{3} \ln 8 = 2 + \frac{1}{3} \ln 2^3$ $= 2 + \frac{1}{3} \times 3 \ln 2$ $= 2 + \ln 2$

5. **a.**
$$\frac{1}{\sqrt{6x-3}} = \frac{1}{6} \frac{6}{\sqrt{6x-3}}$$

f est de la forme $\frac{1}{6} \frac{u'}{\sqrt{u}}$ avec u(x) = 6x - 3 et u'(x) = 6,

donc, une primitive de f sur] 2; $+\infty$ [est $F = \frac{1}{6} 2\sqrt{u}$: $x \mapsto \frac{1}{6} \times 2\sqrt{6x - 3} = \frac{\sqrt{6x - 3}}{3}$.

b.
$$f$$
 est de la forme $\frac{u'}{\sqrt{u}}$ avec $u(x) = x - 3$ et $u'(x) = 1$,

donc, une primitive de f sur] 3; $+\infty$ [est $F = 2\sqrt{u}$: $x \mapsto 2\sqrt{x-3}$.

c.
$$\frac{2}{\sqrt{3-6x}} = 2 \times (-\frac{1}{6}) \frac{-6}{\sqrt{6x-3}}$$

f est de la forme $-\frac{1}{3}\frac{u'}{\sqrt{u}}$ avec u(x) = 3 - 6x et u'(x) = -6,

donc, une primitive de f sur $]-\infty$; 2 [est $F = -\frac{1}{3} \times 2\sqrt{u} : x \mapsto -\frac{1}{3} \times 2\sqrt{3-6x} = \frac{-2\sqrt{3-6x}}{3}$

d.
$$\frac{x}{\sqrt{x^2+2}} = \frac{1}{2} \frac{2x}{\sqrt{x^2+2}}$$

f est de la forme $\frac{1}{2} \frac{u'}{\sqrt{u}}$ avec $u(x) = x^2 + 1$ et u'(x) = 2x,

donc, une primitive de f sur \mathbb{R} est $F = \frac{1}{2} \times 2\sqrt{u}$: $x \mapsto \frac{1}{2} \times 2\sqrt{x^2 + 1} = \sqrt{x^2 + 1}$

6. a.
$$(2x-5)^5 = \frac{1}{2} \times 2(2x-5)^5$$

g est de la forme $\frac{1}{2}u'u^5$ avec u(x) = 2x - 5 et u'(x) = 2

donc, une primitive de g sur \mathbb{R} est $G = \frac{1}{2} \frac{u^6}{6} : x \mapsto \frac{1}{2} \frac{(2x-5)^6}{6} = \frac{(2x-5)^6}{12}$.

b.
$$7(2x-5)^7 = 7 \times \frac{1}{2} \times 2(2x-5)^5$$

g est de la forme $\frac{7}{2}u'u^7$ avec u(x) = 2x - 5 et u'(x) = 2

donc, une primitive de g sur \mathbb{R} est $G = \frac{7}{2} \frac{u^8}{8} : x \mapsto \frac{7}{2} \frac{(2x-5)^8}{8} = \frac{7(2x-5)^8}{16}$.

c.
$$x(x^2+1)^4 = \frac{1}{2} \times 2x(x^2+1)^4$$

g est de la forme $\frac{1}{2}u'u^4$ avec $u(x) = x^2 + 1$ et u'(x) = 2x,

donc, une primitive de g sur \mathbb{R} est $G = \frac{1}{2} \frac{u^5}{5} : x \mapsto \frac{1}{2} \frac{(x^2 + 1)^5}{5} = \frac{(x^2 + 1)^5}{10}$

d.
$$(x+1)(x^2+2x-5)^9 = \frac{1}{2}(2x+2)(x^2+2x-5)^9$$

g est de la forme $\frac{1}{2}u'u^9$ avec $u(x) = x^2 + 2x - 5$ et u'(x) = 2x + 2,

donc, une primitive de g sur \mathbb{R} est $G = \frac{1}{2} \frac{u^{10}}{10}$: $x \mapsto \frac{1}{2} \frac{(x^2 + 2x - 5)^{10}}{10} = \frac{(x^2 + 2x - 5)^{10}}{20}$.

7.
$$\psi$$
 est de la forme $\frac{u'}{\sqrt{u}} + u'u^3$ avec $u(x) = x + 1$ et $u'(x) = 1$,

donc, une primitive de
$$\psi$$
 sur] 1; $+\infty$ [est $2\sqrt{u} + \frac{u^4}{4}$: $x \mapsto 2\sqrt{x+1} + \frac{(x+1)^4}{4}$

donc,
$$G$$
 est de la forme des primitives de ψ sur] 1; $+\infty$ [qui sont les $x \mapsto 2\sqrt{x+1} + \frac{(x+1)^4}{4} + k$ avec $k \in \mathbb{R}$.

Trower la constante k:

Alors:

$$G(0) = 2$$

 $\Leftrightarrow 2\sqrt{0+1} + \frac{(0+1)^4}{4} + k = 2$

$$\Leftrightarrow k = -\frac{1}{4}$$

On en déduit que G est la fonction définie par $G(x) = 2\sqrt{x+1} + \frac{(x+1)^4}{4} - \frac{1}{4}$

8. **a.**
$$e^{3x+1} = \frac{1}{3} \times 3e^{3x+1}$$

f est de la forme
$$\frac{1}{3}u'e^u$$
 avec $u(x) = 3x + 1$ et $u'(x) = 3$,

donc, une primitive de
$$f$$
 sur \mathbb{R} est $F = \frac{1}{3} e^{u} : x \mapsto \frac{1}{3} e^{3x+1}$.

b.
$$e^{2-x} = -(-e^{2-x})$$

$$f$$
 est de la forme $-u'$ e^u avec $u(x) = 2 - x$ et $u'(x) = -1$, donc, une primitive de f sur \mathbb{R} est $F = -e^u : x \mapsto -e^{2-x}$.

c.
$$2 e^{1-2x} = -(-2 e^{1-2x})$$

f est de la forme
$$-u'e^u$$
 avec $u(x) = 1 - 2x$ et $u'(x) = -2$, donc, une primitive de f sur \mathbb{R} est $F = -e^u : x \mapsto e^{1-2x}$.

d.
$$\frac{2}{e^x} = 2 e^{-x} = -2 (-e^{-x})$$

$$f$$
 est de la forme $-2 u'$ e u' avec $u(x) = -x$ et $u'(x) = -1$,

donc, une primitive de
$$f$$
 sur \mathbb{R} est $F = -2 e^u : x \mapsto -2 e^{-x} = \frac{-2}{e^x}$.

e.
$$x e^{x^2} = \frac{1}{2} \times 2x e^{x^2}$$

f est de la forme
$$\frac{1}{2}u'e^u$$
 avec $u(x) = x^2$ et $u'(x) = 2x$,

donc, une primitive de
$$f$$
 sur \mathbb{R} est $F = \frac{1}{2} e^{u} : x \mapsto \frac{1}{2} e^{x^{2}}$.

9. a.
$$1 - e^{2x-1} = 1 - \frac{1}{2} \times 2 e^{2x-1}$$

$$v$$
 est de la forme $1 - \frac{1}{2}u'$ e u avec $u(x) = 2x - 1$ et $u'(x) = 2$,

donc, une primitive de
$$v$$
 sur \mathbb{R} est $x \mapsto x - \frac{1}{2} e^{2x-1}$

donc, les primitives de
$$v$$
 sur \mathbb{R} sont les $x \mapsto x - \frac{1}{2} e^{2x-1} + k$ avec $k \in \mathbb{R}$.

b. La représentation graphique passe par le point
$$A(1;1)$$

$$\Leftrightarrow 1 - \frac{1}{2}e^{2 \times 1 - 1} + k = 1$$

$$\Leftrightarrow k = \frac{e}{2}$$

On en déduit que la primitive de v dont la représentation graphique passe par A (1;1) est $x \mapsto x - \frac{1}{2}e^{2x-1} + \frac{e}{2}$.

10. a. Une première méthode serait de développer :
$$(e^x - 1)e^x = e^{2x} - e^x$$
 et on a deux expressions qu'on saura gérer facilement. Mais montrons une seconde méthode qui servira pour les exemples suivants...

h est de la forme
$$u'u$$
 avec $u(x) = e^x + 1$ et $u'(x) = e^x$, donc, une primitive de h sur \mathbb{R} est $\frac{u^2}{2} : x \mapsto \frac{(e^x + 1)^2}{2}$.

h est de la forme
$$u'u^2$$
 avec $u(x) = e^x + 1$ et $u'(x) = e^x$, donc, une primitive de h sur \mathbb{R} est $\frac{u^3}{3}: x \mapsto \frac{(e^x + 1)^3}{3}$.

c.
$$h$$
 est de la forme $\frac{u'}{u}$ avec $u(x) = e^x + 1$ strictement positif sur \mathbb{R} et $u'(x) = e^x$,

donc, une primitive de
$$h$$
 sur \mathbb{R} est $\ln u : x \mapsto \ln (e^x + 1)$.

- **d.** h est de la forme $\frac{u'}{u^2}$ avec $u(x) = e^x + 1$ et $u'(x) = e^x$, donc, une primitive de h sur \mathbb{R} est $\frac{-1}{u}: x \mapsto -\frac{1}{e^x + 1}$.
- **e.** $e^{-x} (e^{-x} + 1) = -(-e^{-x}) (e^{-x} + 1)$ $h \text{ est de la forme } -u'u \text{ avec } u(x) = e^{-x} + 1 \text{ et } u'(x) = -e^{-x},$ $donc, \text{ une primitive de } h \text{ sur } \mathbb{R} \text{ est } \frac{u^2}{2} : x \mapsto \frac{(e^{-x} + 1)^2}{2}.$
- **f.** $\frac{e^{-x}}{e^{-x}+1} = -\frac{e^{-x}}{e^{-x}+1}$ $h \text{ est de la forme } -\frac{u'}{u} \text{ avec } u(x) = e^{-x}+1 \text{ strictement positif sur } \mathbb{R} \text{ et } u'(x) = -e^{-x},$ $\text{donc, une primitive de } h \text{ sur } \mathbb{R} \text{ est ln } u: x \mapsto \ln (e^{-x}+1).$

g. $e^{2x} (e^{2x} - 2) = \frac{1}{2} \times 2 e^{2x} (e^{2x} - 2)$ h est de la forme $\frac{1}{2}u'u$ avec $u(x) = e^{2x} - 2$ et $u'(x) = 2 e^{2x}$, donc, une primitive de h sur \mathbb{R} est $\frac{1}{2}\frac{u^2}{2} : x \mapsto \frac{1}{2}\frac{(e^{2x} - 2)^2}{2}$.

h. $\frac{x e^{x^2}}{e^{x^2} + 2} = \frac{1}{2} \frac{2x e^{x^2}}{e^{x^2} + 2}$ $h \text{ est de la forme } \frac{1}{2} \frac{u'}{u} \text{ avec } u(x) = e^{x^2} + 2 \text{ strictement positif sur } \mathbb{R} \text{ et } u'(x) = 2x e^{x^2},$ $\text{donc, une primitive de } h \text{ sur } \mathbb{R} \text{ est ln } u : x \mapsto \ln(e^{x^2} + 2).$

- 11. Deux grands classiques...
 - **a.** La première expression est très simple à condition d'avoir l'idée de séparer la fraction : $\frac{\ln x}{x} = \frac{1}{x} \ln x$

p est de la forme u'u avec $u(x) = \ln x$ et $u'(x) = \frac{1}{x}$, donc, une primitive de p sur] 0; $+\infty$ [est $\frac{u^2}{2}$: $x \mapsto \frac{(\ln x)^2}{2}$.

b. La seconde s'appuie sur la même astuce : $\frac{1}{x}$

q est de la forme $\frac{u'}{u}$ avec $u(x) = \ln x$ strictement positif sur $]1; +\infty[$ et $u'(x) = \frac{1}{x}$, donc, une primitive de q sur $]1; +\infty[$ est $\ln u: x \mapsto \ln(\ln x)$.

- 3 1. On se ramène à la forme y'=ay la plus simple que nous savons résoudre. $y'+2y=0 \iff y'=-2y$ Les solutions sont les fonctions $x\mapsto C \operatorname{e}^{-2x}$ définies sur \mathbb{R} , avec $C\in\mathbb{R}$.
 - 2. On se ramène à la forme y'=ay+b, la deuxième forme que nous savons résoudre. $y'+2y=5 \iff y'=-2y+5$
 - $0 = -2k + 5 \iff k = \frac{5}{2}$ donc, la solution particulière constante est $x \mapsto \frac{5}{2}$.
 - On en déduit que les solutions sont les fonctions $x \mapsto C e^{-2x} + \frac{5}{2}$ définies sur \mathbb{R} , avec $C \in \mathbb{R}$.
 - 3. **a.** Pour tout $x \in \mathbb{R}$: $\begin{cases} G(x) = \frac{1}{2}x \frac{1}{4} \\ G'(x) = \frac{1}{2} \end{cases}$ $\text{donc } G'(x) + 2G(x) = \frac{1}{2} + 2(\frac{1}{2}x \frac{1}{4})$ $= \frac{1}{2} + x \frac{1}{2}$ = x

donc G est une solution particulière de (E): y' + 2y = x.

b. On se ramène à la troisième forme y' = ay + f que nous savons résoudre.

$$y' + 2y = x \iff y' = -2y + x$$

Les solutions de (E) sont les fonctions $x \mapsto C e^{-2x} + \frac{1}{2}x - \frac{1}{4}$ définies sur \mathbb{R} , avec $C \in \mathbb{R}$.

4. a. f est de la forme uv avec $\begin{cases} u(x) = x \text{ et } u'(x) = 1\\ v(x) = e^x \text{ et } v'(x) = e^x \end{cases}$

donc f est dérivable sur \mathbb{R} et f' = u'v + uv'

donc
$$f'(x) = 1 \times e^x + x e^x$$

= $e^x + x e^x$

$$\int f(x) = x e^x$$

$$\int f'(x) = e^x + x e^x$$

donc $f'(x) - f(x) = e^x + x e^x - x e^x$ = e^x

- donc f est une solution particulière de (\mathscr{E}) : $y' y = e^x$.
- **b.** $y' y = e^x \iff y' = y + e^x$

Les solutions de (\mathscr{E}) sont les fonctions $x \mapsto C e^x + x e^x$ définies sur \mathbb{R} , avec $C \in \mathbb{R}$.

c.
$$h(1) = 1$$

$$\Leftrightarrow C e^1 + 1 e^1 = 1$$

$$\Leftrightarrow C = \frac{1-e}{e}$$

Donc $h: x \mapsto \frac{1-e}{e} e^x + x e^x$ définie sur \mathbb{R} .

4) 1. Pour vérifier l'équation différentielle, il me faut d'abord la dérivée :

u est de la forme *vw* avec
$$\begin{cases} u(x) = x \text{ et } u'(x) = 1\\ v(x) = e^{2x} \text{ et } v'(x) = 2 e^{2x} \end{cases}$$

donc u est dérivable sur \mathbb{R} et u' = v'w + vw'

donc
$$u'(x) = 1 \times e^{2x} + x \times 2 e^{2x}$$

= $(1 + 2x) e^{2x}$

On en déduit :

$$u'(x) - 2 u(x) = (1 + 2x) e^{2x} - 2 x e^{2x}$$

= e^{2x}

donc u est une solution particulière de (E).

2. Application du cours :

$$y' - 2y = 0 \iff y' = 2y$$

Donc, les solutions de (E_0) sont les fonctions $x \mapsto C e^{2x}$ définies sur \mathbb{R} , avec $C \in \mathbb{R}$.

- 3. Version en deux implications réciproques :
 - Supposons v solution de (E).

Alors:

$$(v-u)'-2(v-u) = v'-u'-2v+2u$$

= $(v'-2v)-(u'-2u)$
= $e^{2x}-e^{2x}$ car v solution de (E) et d'après **1.**
= 0

Donc v - u solution de (E_0) .

• Réciproquement, supposons v - u solution de (E_0) .

Alors
$$(v-u)'-2(v-u)=0$$

et donc
$$(v'-2v)-(u'-2u)=0$$

donc
$$v'-2v = u'-2u$$

$$= e^{2x} d'après 1.$$

Donc v solution de (E).

- 4. v solution de (E)
 - $\Leftrightarrow v u$ solution de (E₀) d'après 3.
 - $\Leftrightarrow v u$ de la forme $x \mapsto C e^{2x}$ avec $C \in \mathbb{R}$ d'après 2.
 - $\Leftrightarrow v$ de la forme $x \mapsto C e^{2x} + u(x) = C e^{2x} + x e^{2x}$ avec $C \in \mathbb{R}$.

Donc, les solutions de (E) sont les fonctions de la forme $x \mapsto C e^{2x} + x e^{2x}$ définies sur \mathbb{R} , avec $C \in \mathbb{R}$.

5.
$$C e^{2\times 0} + 0 e^{2\times 0} = 1$$

 $\Leftrightarrow C = 1$

Donc, la fonction est $x \mapsto e^{2x} + x e^{2x}$ définie sur \mathbb{R} .

 \rightarrow On peut factoriser sous la forme $(1+x)e^{2x}$.

Voici la version rapide par succession d'équivalences:

$$v$$
 solution de (E)

$$\Leftrightarrow v' - 2v = e^{2x}$$

$$\Leftrightarrow v' - 2v = u' - 2u$$
 d'après **1.**

$$\Leftrightarrow v' - 2v - u' + 2u = 0$$

$$\Leftrightarrow$$
 $(v-u)'-2(v-u)=0$

$$\Leftrightarrow v - u$$
 solution de (E_0) .

(5) 1. $y' - 2y = 0 \iff y' = 2y$

Donc, les solutions de (E_1) sont les fonctions $x \mapsto C e^{2x}$ définies sur \mathbb{R} , avec $C \in \mathbb{R}$.

2. **a.** • f est de la forme uv avec $\begin{cases} u(x) = ax + b \text{ et } u'(x) = a \\ v(x) = e^x \text{ et } v'(x) = e^x \end{cases}$

donc
$$f$$
 est dérivable sur \mathbb{R} et $f' = u'v + uv'$
donc $f'(x) = a e^x + (ax + b) e^x$
 $= (ax + b + a) e^x$

- f solution de (E₂)
 - $\Leftrightarrow f'(x) 2f(x) = xe^x$
 - \Leftrightarrow $(ax + b + a) e^x 2 (ax + b) e^x = xe^x$
 - \Leftrightarrow $(ax + b + a 2ax 2b) e^x = xe^x$
 - \Leftrightarrow $(-ax b + a) e^x = xe^x$
 - \Leftrightarrow -ax b + a = x
 - $\Leftrightarrow \begin{cases} -a = 1 \\ -b + a = 0 \end{cases}$
 - $\Leftrightarrow \begin{cases} a = -1 \\ b = -1 \end{cases}$
- b. Proposons la version rapide par équivalences:

$$f + g$$
 solution de (E₂)

$$\Leftrightarrow$$
 $(f+g)'-2(f+g) = xe^x$

$$\Leftrightarrow f' + g' - 2f - 2g = xe^x$$

$$\Leftrightarrow (f'-2f)+g'-2g=xe^x$$

$$\Leftrightarrow xe^x + g' - 2g = xe^x$$
 d'après **2. a.**

$$\Leftrightarrow g' - 2g = 0$$

 \Leftrightarrow g solution de (E₁).

- **c.** h solution de (E_2)
 - \Leftrightarrow (h-f)+f solution de (E_2)
 - $\Leftrightarrow h-f$ solution de (E_1) d'après **2. b.**
 - $\Leftrightarrow h-f$ de la forme $x \mapsto C e^{2x}$ avec $C \in \mathbb{R}$ d'après 1.
 - $\Leftrightarrow h$ de la forme $x \mapsto C e^{2x} + f(x) = C e^{2x} + (-x 1) e^{2x}$ avec $C \in \mathbb{R}$.

Donc, l'ensemble des solutions est l'ensemble des fonctions de la forme $x \mapsto C e^{2x} + (-x - 1) e^{2x}$ définies sur \mathbb{R} , avec $C \in \mathbb{R}$.

- 3. $C e^{2\times 0} + (-0 1) e^{2\times 0} = 0$
 - $\Leftrightarrow C-1=0$
 - $\Leftrightarrow C = 1$

Donc, la fonction est $x \mapsto e^{2x} + (-x - 1) e^{2x}$ définie sur \mathbb{R} .

 \rightarrow La factorisation simplifie l'expression en $-x e^{2x}$.