Savoir ÉTUDIER DES SUITES AVEC DES MATRICES

Remarques sur les exercices

- L'exercice ① étudie le comportement de deux suites (r_n) et (c_n) récurrentes croisées: r_{n+1} est exprimé en fonction de r_n et de c_n et c_{n+1} est aussi exprimé en fonction de r_n et de c_n.
 Vous découvrirez la notion de matrice de transition qui permet de gérer les deux suites en même temps.
 Les exercices ② et ③ sont similaires.
- L'exercice 4, assez court, utilise des matrices pour étudier une suite <u>récurrente double</u> : u_{n+1} est exprimé en fonction de u_{n+1} et de u_n .
- L'exercice (5) est un long problème où on étudie la <u>suite de Fibonacci</u>, définie par une <u>récurrence double</u>. On retrouve des questions d'arithmétique en fin de problème.
- ① Dans un pays de population constante égale à 120 millions, les habitants vivent soit en zone rurale, soit en ville.

Les mouvements de population peuvent être modélisés de la façon suivante :

- en 2010, la population compte 90 millions de ruraux et 30 millions de citadins ;
- chaque année, 10 % des ruraux émigrent à la ville ;
- chaque année, 5 % des citadins émigrent en zone rurale.

Pour tout entier nature n, on note:

- r_n l'effectif de la population rurale, exprimé en millions d'habitants, en l'année 2010 + n,
- c_n l'effectif de la population citadine, exprimé en millions d'habitants, en l'année 2010 + n.

On a donc $r_0 = 90$ et $c_0 = 30$.

- 1. On peut exprimer r_{n+1} en fonction de r_n et de c_n avec $r_{n+1} = 0.9 r_n + 0.05 c_n$. Exprimer de même c_{n+1} en fonction de r_n et de c_n .
- 2. On considère la matrice colonne $U_n = \begin{pmatrix} r_n \\ c_n \end{pmatrix}$ pour tout entier n > 0.

Déterminer la matrice A telle que $U_{n+1} = A \times U_n$ pour tout entier n et donner la matrice U_0 .

La matrice A est appelée matrice de transition de U_{n+1} à U_n .

- **3.** Montrer par récurrence que, pour tout entier n > 0, $U_n = A^n \times U_0$.
- **4. a.** À la calculatrice, donner un arrondi de A^5 en arrondissant les coefficients au millième.
 - **b.** En déduire un arrondi de U_5 et en donner une interprétation concrète.
- **5.** a. Soit la matrice $P = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$.

Montrer que la matrice $\begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$ est la matrice inverse de P. On la notera P^{-1} .

- **b.** On pose $D = P^{-1}AP$. Calculer D à l'aide de la calculatrice.
- **c.** Démontrer que $A = P D P^{-1}$.
- **d.** Démontrer par récurrence que, pour tout entier naturel n non nul, $A^n = P D^n P^{-1}$.
- **6.** a. Donner sans justification la matrice D^n en fonction de n.
 - **b.** En déduire que, pour tout entier naturel n, $r_n = 50 \times 0.85^n + 40$. Déterminer de même l'expression de c_n en fonction de n.
 - **c.** Déterminer la limite de r_n et de c_n lorsque n tend vers $+\infty$. Que peut-on en conclure pour la population étudiée ?
 - d. Déterminer à partir de quelle année la population urbaine aura dépassé la population rurale.

- 2 Le droit de pêche dans une réserve marine est réglementé : chaque pêcheur doit posséder une carte d'accréditation annuelle. Il existe deux types de cartes de pêche :
 - une d'abonné (le pêcheur n'est pas limité en nombre de poissons pêchés) ;
 - une carte bridée (le pêcheur est limité en nombre de poissons pêchés).

On suppose que le nombre total de pêcheurs reste constant d'année en année.

On note, pour l'année 2017+n:

- a_n la proportion de pêcheurs possédant la carte de pêche d'abonné;
- b_n la proportion de pêcheurs possédant la carte de pêche bridée.

On observe chaque année que :

- 65 % des possesseurs de la carte de pêche d'abonné achètent de nouveau une carte de pêche d'abonné l'année suivante ;
- 45 % des possesseurs de la carte de pêche bridée achètent une carte de pêche d'abonné l'année suivante.

En 2017, 40 % des pêcheurs ont acheté une carte de pêche d'abonné.

On a donc $a_0 = 0.4$ et $b_0 = 0.6$.

Pour tout entier naturel n, on note $P_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$.

1. Pour tout entier nature n, exprimer a_{n+1} et b_{n+1} en fonction de a_n et b_n .

En déduire que $P_{n+1} = MP_n$, où M est la matrice carrée $\begin{pmatrix} 0.65 & 0.45 \\ 0.35 & 0.55 \end{pmatrix}$.

- 2. Calculer la proportion de pêcheurs achetant une carte de pêche bridée en 2019.
- **3.** On définit la matrice carrée $Q = \begin{pmatrix} 9 & 1 \\ 7 & -1 \end{pmatrix}$.
 - **a.** En utilisant la calculatrice, donner la valeur des produits QT et TQ, où T est la matrice $T = \begin{pmatrix} 1 & 1 \\ 7 & -9 \end{pmatrix}$.
 - **b.** En déduire que Q est une matrice inversible et donner sa matrice inverse Q^{-1} .
- **4.** a. Montrer que $Q^{-1}MQ$ est une matrice D diagonale qu'on précisera.
 - **b.** Démontrer par récurrence que, pour tout entier naturel n non nul, $M^n = QD^nQ^{-1}$.
 - **c.** En déduire que, pour tout entier naturel *n* non nul, $M^n = \frac{1}{16} \begin{pmatrix} 9 + 7 \times 0.2^n & 9 9 \times 0.2^n \\ 7 7 \times 0.2^n & 7 + 9 \times 0.2^n \end{pmatrix}$
- **5.** a. Pour tout entier nature n, donner sans justification l'expression de P_n en fonction de M et P_0 .
 - **b.** En déduire les expressions explicites de a_n et b_n .

D'après Baccalauréat Antilles-Guyane 2018

(3) Parmi les 500 ordinateurs d'un parc informatique, 60 % présentent des failles de sécurité.

Afin de pallier ce problème, on demande à un technicien d'intervenir chaque jour pour traiter les défaillances.

On estime que chaque jour, il remet en état 7 % des ordinateurs défaillants, tandis que de nouvelles failles apparaissent chez 3 % des ordinateurs sains.

On suppose de plus que le nombre d'ordinateurs est constant sur la période étudiée.

Pour tout entier naturel n, on note a_n le nombre d'ordinateurs sains de ce parc informatique au bout de n jours d'intervention, et b_n le nombre d'ordinateurs défaillants au bout de n jours. Ainsi $a_0 = 200$ et $b_0 = 300$.

Partie A

- **1.** Déterminer a_1 et b_1 .
- **2.** On pose $X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$ et la matrice $A = \begin{pmatrix} 0.97 & 0.07 \\ 0.03 & 0.93 \end{pmatrix}$.
 - **a.** Justifier que pour tout entier naturel n, on a $X_{n+1} = AX_n$.
 - **b.** Montrer, par récurrence, que pour tout entier naturel n, $X_n = A^n X_0$.
 - **c.** À l'aide de la calculatrice, calculer A^{20} en arrondissant les coefficients au millième. En déduire un arrondi de X_{20} et en donner une interprétation concrète dans le cadre du problème.

Partie B

1. On pose $D = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.9 \end{pmatrix}$ et $B = \begin{pmatrix} 35 \\ 15 \end{pmatrix}$.

On rappelle que, pour tout entier naturel n, $a_n + b_n = 500$.

Montrer que, pour tout entier naturel n, $X_{n+1} = DX_n + B$.

- **2.** Pour tout entier naturel n, on pose $Y_n = X_n 10B$.
 - **a.** Calculer la matrice 10D.

- **b.** En déduire que, pour tout entier naturel n, $Y_{n+1} = DY_n$.
- **c.** On admet que, pour tout entier naturel n, $Y_n = D^n Y_0$. En déduire que, pour tout entier naturel n, $X_n = D^n (X_0 - 10B) + 10B$.
- **d.** Donner l'expression de D^n , puis en déduire a_n et b_n en fonction de n.
- 3. Selon cette étude, que peut-on dire du nombre d'ordinateurs défaillants sur le long terme ?

D'après Baccalauréat Antilles-Guyane Septembre 2016

- On considère la suite (u_n) définie par $u_0 = 1$, $u_1 = 6$ et, pour tout entier naturel n, $u_{n+2} = 6u_{n+1} 8u_n$.
 - 1. Calculer u_2 et u_3 .
 - **2.** On considère la matrice $A = \begin{pmatrix} 0 & 1 \\ -8 & 6 \end{pmatrix}$ et la matrice colonne $U_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$. Montrer que, pour tout entier naturel n, on a : $U_{n+1} = AU_n$.
 - 3. On considère de plus les matrices $B = \begin{pmatrix} 2 & -0.5 \\ 4 & -1 \end{pmatrix}$ et $C = \begin{pmatrix} -1 & 0.5 \\ -4 & 2 \end{pmatrix}$.
 - **a.** Montrer par récurrence que, pour tout entier naturel n, on a : $A^n = 2^n B + 4^n C$.
 - **b.** Montrer par récurrence que, pour tout entier nature n, on a : $U_n = A^n U_0$.
 - **c.** En déduire que, pour tout entier naturel n, on a : $u_n = 2 \times 4^n 2^n$.
- ⑤ On appelle suite de Fibonacci la suite (u_n) définie par $u_0 = 0$, $u_1 = 1$ et, pour tout entier naturel n, $u_{n+2} = u_{n+1} + u_n$. On admet que, pour tout entier naturel n, u_n est un entier naturel.
 - 1. a. Calculer les termes de la suite de Fibonacci jusqu'à u_7 .
 - **b.** Dessiner les 13 spirales qui tournent dans le sens direct O à la base d'une pomme de pin. Compter les spirales qui tournent dans le sens indirect O à la base d'une pomme de pin. Quelle remarque peut-on faire ?

Faire de même avec les spirales d'un brocoli romanesco, puis avec les spirales du cœur d'une fleur de tournesol. Quelle remarque peut-on faire ?

Le cœur d'une fleur de toumeso

- **c.** Recopier et compléter l'algorithme ci-dessous pour qu'à la fin de son exécution il affiche le terme u_n .
 - a = 0
 b = 1
 for k in range(n) :
 c = a+b
 a = ...
 b = ...
 print(...)
- **d.** Déterminer la valeur de u_{12} .
- **2.** On considère la matrice $F = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.
 - **a.** Calculer F^2 , F^3 et F^4 .
 - **b.** Démontrer par récurrence que, pour tout entier naturel n non nul, $F^n = \begin{pmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{pmatrix}$.

- **3. a.** Soit n un entier naturel non nul. En remarquant que $F^{2n+2} = F^{n+2} \times F^n$, démontrer que $u_{2n+2} = u_{n+2} \times u_{n+1} + u_{n+1} \times u_n$.
 - **b.** En déduire que, pour tout entier naturel n non nul, $u_{2n+2} = u_{n+2}^2 u_n^2$.
 - **c.** On donne $u_{12} = 144$.

Démontrer qu'il existe un triangle rectangle dont les longueurs des côtés sont toutes des nombres entiers, l'une étant égale à 12.

Donner la longueur des deux autres côtés.

- **4. a.** Soit p et q deux entiers naturels non nuls. Calculer le produit $F^p \times F^q$ et en déduire que $u_{p+q} = u_p \times u_{q+1} + u_{p-1} \times u_q$.
 - **b.** En déduire que si un entier r divise les entiers u_p et u_q , alors r divise également u_{p+q} .
 - **c.** Soit *p* un entier naturel non nul.

Démontrer, en utilisant un raisonnement par récurrence sur n, que pour tout entier naturel n non nul, u_p divise u_{np} .

d. Soit *m* un entier supérieur ou égal à 5.

Montrer que si m est un entier naturel qui n'est pas premier, alors u_m n'est pas un nombre premier.

e. Calculer u_{19}

Que penser de la réciproque de la propriété obtenue dans la question d.?

D'après Baccalauréats Liban 2018 et Nouvelle Calédonie 2018