Savoir CALCULER AVEC DES MATRICES

Ce que je dois avoir compris

• Une matrice de dimension $n \times p$ est un tableau de nombres réels comportant n lignes et p colonnes, écrits entre crochets (ou entre parenthèses).

Le réel de la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne, noté généralement sous la forme a_{ij} , est appelé coefficient de la matrice :

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} \text{ ou } \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}.$$

$$\underline{\textit{Exemple}}: \ A = \begin{bmatrix} 5 & -2 & 0 \\ 3 & 1 & -4 \end{bmatrix} \ \text{est une matrice de dimension } 2 \times 3 \ \text{et} \ B = \begin{bmatrix} 5 & -1 \\ 0 & 3 \\ 1 & 2 \end{bmatrix} \ \text{est une matrice de dimension } 3 \times 2.$$

• Lorsqu'une matrice n'a qu'une ligne (donc de dimension $1 \times p$), on dit que c'est une **matrice-ligne**. Lorsqu'une matrice n'a qu'une colonne (de dimension $n \times 1$), on dit que c'est une **matrice-colonne**.

 $\underline{\textit{Remarque}}: \text{ Les vecteurs } \overrightarrow{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \text{ du plan et } \overrightarrow{u} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \text{ de l'espace peuvent être assimilés à des matrices-colonnes.}$

• Lorsqu'une matrice contient n lignes et n colonnes, on dit que c'est une matrice carrée d'ordre n.

Les coefficients a_{ii} forment la **diagonale** de la matrice.

Si tous les coefficients hors de la diagonale sont nuls, la matrice est appelée matrice diagonale.

Exemple:
$$A = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$
 est une matrice diagonale d'ordre 4.

Ce que je dois savoir faire

• Additionner deux matrices

Soit deux matrices A, de coefficients a_{ij} , et B, de coefficients b_{ij} , de même dimension.

La **somme** A + B est la matrice de coefficients $a_{ij} + b_{ij}$ (on additionne les coefficients de même position). Elle est de même dimension que A et B.

Remarque: Une matrice ayant tous ses coefficients nuls est appelée matrice nulle.

• Multiplier une matrice par un nombre

Le **produit** kA, avec k nombre réel, la matrice de coefficients ka_{ij} (on multiplie tous les coefficients par k). Elle est de même dimension que A.

Remarque: On peut alors calculer des combinaisons linéaires de deux matrices, de la forme kA + hB.

Multiplier deux matrices

Pas si compliquée dans la pratique, le produit de deux matrices est difficile à définir :

Une définition préliminaire : Soit $L = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \end{bmatrix}$ une matrice-ligne $1 \times p$ et $C = \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{p1} \end{bmatrix}$ une matrice-colonne $p \times 1$.

Elles sont donc telles qu'il y a autant de coefficients en ligne que de coefficients en colonne.

On appelle **produit de** L par C, notée $L \times C$ (ou simplement LC) le réel $a_{11}b_{11} + a_{12}b_{21} + ... + a_{1p}b_{p1}$.

$$\begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{p1} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} \ a_{12} \cdots a_{1p} \end{bmatrix} \times = a_{11} b_{11} + a_{12} b_{21} + \dots + a_{1p} b_{p1}$$

Exemple: Si
$$L = \begin{bmatrix} -2 & 5 & 1 \end{bmatrix}$$
 et $C = \begin{bmatrix} 3 \\ 2 \\ -7 \end{bmatrix}$, alors $LC = \begin{bmatrix} -2 & 5 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 2 \\ -7 \end{bmatrix} = (-2) \times 3 + 5 \times 2 + 1 \times (-7) = -1$.

La <u>définition générale</u> :

Soit
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_1 \\ \mathbf{L}_2 \\ \vdots \\ \mathbf{L}_n \end{bmatrix}$$
 une matrice $n \times p$ dont la $i^{\text{ème}}$ ligne $\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ip} \end{bmatrix}$ est notée \mathbf{L}_i .

Soit $B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p1} & b_{p2} & \cdots & b_{pm} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \cdots & \mathbf{C}_m \end{bmatrix}$ une matrice $p \times m$ dont la $j^{\text{ème}}$ colonne $\begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{pj} \end{bmatrix}$ est notée \mathbf{C}_j .

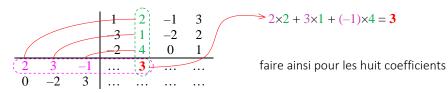
Elles sont donc telles que A possède autant de colonnes que B possède de lignes.

On appelle **produit de** A par B la matrice de coefficients $c_{ii} = L_i \times C_i$.

AB a autant de lignes que A et autant de colonnes que B : c'est une matrice $n \times m$.

Remarque : Si $n \neq m$, le produit $B \times A$ n'existe pas !

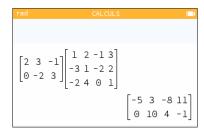
sous la forme pratique :



puis écrire en ligne :
$$AB = \begin{bmatrix} 2 & 3 & -1 \\ 0 & -2 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & -1 & 3 \\ -3 & 1 & -2 & 2 \\ -2 & 4 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 3 & -8 & 11 \\ 0 & 10 & 4 & -1 \end{bmatrix}$$

Remarque: Les calculatrices savent faire du calcul matriciel mais, pour de petites matrices, il est souvent plus rapide de faire le calcul à la main...

Attention néanmoins en post-bac où les calculatrices ne seront pas autorisées!



Multiplier des matrices carrées

Les matrices carrées de même ordre n constituent un monde où beaucoup de choses deviennent possibles :

- Plus d'inquiétude sur l'existence des produits $A \times B$ et $B \times A$ mais, attention, ils sont généralement différents! (on dit que la multiplication n'est pas commutative)
- On fait attention aux vieux réflexes, valables avec les nombres réels, qui ne le sont plus...

Ainsi, si
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$$
 et $B = \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix}$, alors le produit AB est $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, la matrice nulle!

Le théorème du produit nul est donc faux... Un produit de matrices peut être nul sans qu'aucune des deux matrices ne soit nulle.

On peut calculer $A \times B \times C$ en commençant par le 1^{er} produit $A \times B$ ou par le 2^{ème} produit $B \times C$ mais on ne pourra pas changer l'ordre des facteurs en multipliant A par C.

 $A \times B \times C = (A \times B) \times C = A \times (B \times C)$ (on dit que la multiplication de matrices est associative)

On peut développer en distribuant une matrice sur une somme de matrices :

$$A \times (B + C) = A \times B + A \times C$$

 $(A + B) \times C = A \times C + B \times C$
 $(A + B) \times (C + D) = A \times C + A \times D + B \times C + B \times D$

• La matrice diagonale $I_n = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$ dont la diagonale ne contient que des 1, est appelée **matrice unité d'ordre** n.

Pour toute matrice A carrée d'ordre n, on a : $AI_n = I_n A = A$.

• Calculer une puissance de matrice carrée

On peut multiplier sans risque une matrice carrée par elle-même.

On définit les puissances $A^2 = A \times A$ (appelée la **matrice carré** de A) et les A^k (**puissance** $k^{\text{ème}}$ de A).

Par convention, $A^0 = I_n$ (surtout, ne pas écrire $A^0 = 1$) et $A^1 = A$.

<u>Remarque</u>: Les identités remarquables ne présentent plus d'intérêt! $(A+B) (A-B) \text{ ne devient pas } A^2-B^2 \text{ mais } A^2-AB+BA-B^2 \text{ (car } AB\neq BA \text{ en général)}.$ $(A+B)^2 \text{ devient } A^2+AB+BA+B^2 \text{ (ne pas écrire } 2AB \text{)}.$

- De nombreux exercices consistent à calculer une puissance de matrice en vous guidant pas à pas. Il n'y a pas de méthode particulière mise à part l'utilisation de la calculatrice.
- Retenons néanmoins le résultat suivant :

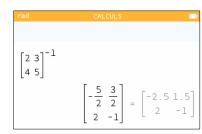
$$\text{Si } A = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \text{ est une matrice diagonale, alors, pour tout entier } n \geqslant 1 \text{ , } A^n = \begin{pmatrix} a^n & 0 & 0 & 0 \\ 0 & b^n & 0 & 0 \\ 0 & 0 & c^n & 0 \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

C'est un beau résultat, mais attention, il n'est valable que pour les matrices diagonales...

Démontrer qu'une matrice est inversible Démontrer qu'une matrice est l'inverse d'une autre matrice carrée Calculer l'inverse d'une matrice carrée

- Lorsque deux matrices A et B carrées d'ordre n vérifient $\begin{cases} AB = I_n \\ BA = I_n \end{cases}$, on dit que A et B sont **inverses l'une de l'autre** et on note $A = B^{-1}$ et $B = A^{-1}$.
- Si une matrice possède une matrice inverse, on dit qu'elle est inversible (et cette matrice inverse est unique).
 Ce n'est pas le cas de toutes les matrices...
- $\underline{\text{Méthode}}$: Si on vous fournit la matrice qui doit être l'inverse, il suffit de montrer que les deux produits font I_n .
- Méthode: Sinon, on peut calculer l'inverse à la calculatrice puis montrer que les deux produits font I_n .

Cela permet de montrer que la matrice est inversible et de justifier l'inverse.



• Méthode pour les matrices carrées d'ordre 2 :

Si
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, alors A est inversible si et seulement si son déterminant $ad - bc$ est non nul. Et alors, son inverse est $\frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Remarques sur les exercices

- Les exercices ② et ③ sont des exercices de calcul. Entraînez-vous à les faire à la main.
- Les exercices **(5)** à **(8)** demanderont des démonstrations par récurrence.
- Les exercices (9), (10) et (11) abordent les matrices inversibles. Le (9) est un grand classique et le (11) vous montre une application des matrices à la résolution d'un système.

- ① Écrire la matrice carrée d'ordre 3 dont les coefficients a_{ij} vérifient $a_{ij} = i + j$, pour tous entiers i et j de $\{1; 2; 3\}$.
- ② **1.** On donne $M = \begin{bmatrix} 2 & 3 & -1 \\ 0 & -2 & 3 \end{bmatrix}$ et $N = \begin{bmatrix} 1 & -3 & 2 \\ -1 & 0 & 5 \end{bmatrix}$.

Calculer M + N, M - N, 10M et la combinaison linéaire 2M + 3N.

2. On donne $A = \begin{bmatrix} 2 & 3 & -1 \\ 0 & -2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ 5 & 0 \\ 2 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $D = \begin{bmatrix} -2 & 3 \\ 7 & -1 \end{bmatrix}$ et $E = \begin{bmatrix} 4 & -1 & 5 \end{bmatrix}$.

Effectuer tous les produits possibles de deux de ces matrices.

(3) Étant donnée les matrices $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$.

Calculer A^3 et B^5 .

- 4 On considère les matrices de la forme $\begin{pmatrix} 0 & n \\ m & 0 \end{pmatrix}$ où m et n sont des entiers relatifs. Parmi ces matrices, déterminer celles dont le carré vaut l'opposé de la matrice unité.
- (5) Soit la matrice $A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ avec a et b réels. Démontrer par récurrence que $A^n = \begin{bmatrix} a^n & 0 \\ 0 & b^n \end{bmatrix}$ pour tout entier $n \in \mathbb{N}$.
- 6 Soit la matrice $A = \begin{bmatrix} 3 & 9 & -9 \\ 2 & 0 & 0 \\ 3 & 3 & -3 \end{bmatrix}$.
 - **a.** Calculer A^2
 - **b.** Démontrer par récurrence que A^n est nulle pour tout entier $n \ge 3$.

Encore un drôle de comportement de la part de matrices... Les matrices dont les puissances sont nulles à partir d'un certain exposant s'appellent des matrices **nilpotentes**.

- - **a.** Calculer A^0 , A^1 , A^2 et A^3 .
 - **b.** Faire une conjecture sur l'expression de A^n pour tout n entier naturel.
 - c. Valider cette conjecture par récurrence.
- (8) On pose la matrice $J = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
 - **a.** Calculer J^2 , J^3 et J^4 .
 - **b.** Conjecturer l'expression de J^n , pour tout entier $n \ge 1$, et la démontrer par récurrence.

Soit
$$M = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$
.

- c. Déterminer les réels α et β tels que $M = \alpha I_2 + \beta J$, avec $J = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
- **d.** Pour deux matrices carrées de même ordre, on rappelle l'identité : $(A + B)^2 = A^2 + AB + BA + B^2$. Établir l'identité du développement de $(A + B)^3$.
- e. En déduire M^3 .

- 9 Soit la matrice $M = \begin{bmatrix} 8 & 3 \\ -14 & -5 \end{bmatrix}$.
 - **a.** On pose la matrice $P = \begin{bmatrix} -3 & -1 \\ 7 & 2 \end{bmatrix}$.

 Montrer que P est inversible et que son inverse est $\begin{bmatrix} 2 & 1 \\ -7 & -3 \end{bmatrix}$, notée P^{-1} .
 - **b.** Calculer la matrice $D = P^{-1} M P$, puis D^{5} .
 - **c.** Montrer que $M = P D P^{-1}$. En déduire M^5 .
- ① On pose la matrice $M = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$.
 - **a.** Calculer $M^2 4M$.
 - **b.** Montrer que M est inversible et que son inverse est $\frac{1}{5}$ ($M-4I_2$).
- ① On considère le système $\begin{cases} -24x + 18y + 5z = 81\\ 20x 15y 4z = -67\\ -5x + 4y + z = 17 \end{cases}$, qu'on sait résoudre par substitution ou par combinaisons linéaires.

On pose les matrices suivantes : $M = \begin{bmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ et $C = \begin{bmatrix} 81 \\ -67 \\ 17 \end{bmatrix}$.

- **a.** Montrer que la matrice $M = \begin{bmatrix} -24 & 18 & 5 \\ 20 & -15 & -4 \\ -5 & 4 & 1 \end{bmatrix}$ est inversible et que son inverse est $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix}$, notée M^{-1} .
- **b.** Calculer MX et écrire le système comme une égalité matricielle.
- **c.** Multiplier les deux membres de l'égalité matricielle à gauche par M^{-1} . En déduire la solution du système.